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Abstract.
Background: Both amyloid (A�) load and APOE4 allele are associated with neurodegenerative changes in Alzheimer’s
disease (AD) prone regions and with risk for cognitive impairment.
Objective: To evaluate the unique and independent contribution of APOE4 allele status (E4+\E4–), A� status (Amy+\Amy–),
and combined APOE4 and A� status on regional cortical thickness (CoTh) and cognition among participants diagnosed as
cognitively normal (CN, n = 251), early mild cognitive impairment (EMCI, n = 207), late mild cognitive impairment (LMCI,
n = 196), and mild AD (n = 162) from the ADNI.
Methods: A series of two-way ANCOVAs with post-hoc Tukey HSD tests, controlling independently for A� and APOE4
status and age were examined.
Results: Among LMCI and AD participants, cortical thinning was widespread in association with Amy+ status, whereas in
association with E4+ status only in the inferior temporal and medial orbito-frontal regions. Among CN and EMCI participants,
E4+ status, but not Amy+ status, was independently associated with increased CoTh, especially in limbic regions [e.g., in
the entorhinal cortex, CoTh was 0.123 mm greater (p = 0.002) among E4+ than E4– participants]. Among CN and EMCI,
both E4+ and Amy+ status were independently associated with cognitive impairment, which was greatest among those with
combined E4 + and Amy+ status.
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Conclusion: Decreased CoTh is independently associated with Amy+ status in many brain regions, but with E4+ status in
very restricted number of brain regions. Among CN and EMCI participants, E4 + status is associated with increased CoTh,
in medial and inferior temporal regions, although cognitive impairment at this state is independently associated with Amy+
and E4 + status. These findings imply a unique pathophysiological mechanism for E4 + status in AD and its progression.
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INTRODUCTION

According to the amyloid hypothesis [1], depo-
sition of amyloid-� protein (A�) in the neocortex,
is the initiating event in the pathophysiology of
Alzheimer’s disease (AD) and occurs 15 to 20 years
before the first symptoms of the disease. This leads
to downstream events including neurodegeneration
and ultimately cognitive and functional impairment.
Recent neuropathological diagnostic criteria for AD
are based upon this hypothesis, incorporating the Thal
phase schema of a stereotypic pattern of A� accu-
mulation, anteceding Braak staging of neurofibrillary
tangle pathology in the brain, with a continuous
relationship existing between brain A� load and
neurodegenerative changes [2]. There is also con-
siderable evidence that APOE E4 (APOE4) carrier
(E4+) status is associated with greater A� load
in normal individuals as well as in all stages of
AD, possibly as a result of the effect of APOE4
genotype on impaired clearance of A� protein
[3, 4]. Aging and E4+ status are among the most
strongly associated factors with increased risk for AD
[3–5].

Deposition of A� in vivo is detectable with positron
emission tomography (PET) scans, using an A�
binding ligand, or by measuring A� levels in the cere-
brospinal fluid (CSF), whereas downstream events
such as neurodegeneration are detectable using vol-
umetric measures of regional atrophy (especially
hippocampal atrophy) and reduced cortical thickness
(CoTh) on structural magnetic resonance imaging
(MRI) scans, as well as deficits in regional cerebral
glucose metabolism on PET scans. Recent clinical
criteria for the diagnosis of AD dementia and Pro-
dromal AD (NIA-AA and IWG criteria) rely on
combinations of “positive biomarkers” in the pres-
ence of functional and/or cognitive impairment with
high, intermediate or low levels of likelihood [6, 7]
based on the presence of A� and neurodegenerative
biomarkers. The presence of A� biomarkers in the
absence of cognitive and functional impairment ful-
fills criteria for a diagnosis of preclinical AD.

Although it is well accepted that A� load,
APOE4 status, and neurodegeneration are strongly
interrelated [8], the presence and strength of the
relationships between these factors and their inde-
pendent effects on cortical thinning and cognition
are not well understood at different stages of dis-
ease. As emerging treatments are developed, it is
increasingly important to understand these indepen-
dent relationships prior to developing appropriate
disease modifying treatments for AD.

The relationship between E4+ status and higher
A� load is well known, as is the relationship of both
E4 + status and higher A� load to a greater risk for
developing Alzheimer’s disease and a greater degree
of neurodegeneration [4, 9–11]. However, the rela-
tionship of APOE4 status to neurodegeneration and
cognitive decline, independent of A� load, and the
relationship of A� load to neurodegeneration and
cognitive decline, independent of APOE4 status, are
not known and to our knowledge have not been stud-
ied thus far.

In the present study, we examined both the com-
bined and independent associations between global
A� load, APOE4 status, and regional CoTh among
four different diagnostic groups in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) sample,
including cognitively normal (CN), early mild cog-
nitive impairment (EMCI), late mild cognitive
impairment (LMCI), or AD dementia participants.
A unique aspect of this investigation was to determine
the independent and combined effects of APOE4 sta-
tus and A� load on regional CoTh and cognition
among individuals presenting with minimal (EMCI)
or no overt memory impairment (CN).

MATERIALS AND METHODS

Study data

Data used in the preparation of this article were
obtained from the ADNI database (http://adni.loni.
usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and
neuropsychological assessment can be combined to
measure the progression of MCI and early AD.

Evaluations

Evaluations included: (1) Medical and neurologi-
cal evaluation and routine labs; (2) Clinical Dementia
Rating (CDR) scale, which was used as the index
of functional ability [12]; (3) neuropsychological
assessment, including the ADAS Cog 13 (ADAS13)
and Mini-Mental State Exam (MMSE) subtests, used
as the global index of cognitive ability [13], and the
Rey Auditory Verbal Learning Test (RAVLT) and
subtests, used as the index of memory performance
[14]; (4) volumetric MRI; and (5) 18F-AV45 amy-
loid PET scans. The time gap between MRI and PET
scans was less than 3 months. A blood sample for
assessment of APOE genotype was also obtained.

Baseline demographic, clinical, and APOE data
were compared for 906 subjects, diagnosed as CN
(251), EMCI (297), LMCI (196), or AD (162), as
shown in Table 1. Subjects with one or more APOE4
alleles, i.e., APOE4 carriers, were classified as E4+,
while those with no APOE4 alleles, i.e., APOE4 non-
carrier, were classified as E4–.

Neuroimaging acquisition

MRI scans were acquired from 1.5T or 3T scanners
at multiple sites across the United States and Canada
using MP-RAGE/IR-SPGR protocols for volumetric

analyses. 18F-AV45 PET scans were acquired 50 min-
utes following administration of 370 MBq (10 mCi)
bolus injection of 18F-AV45, over a 20-mim scanning
period and images were reconstructed immediately
afterwards. Details of MRI and AV45 PET imaging
data acquisition and pre-processing can be found in
the aforementioned ADNI website.

Image processing

MRI image processing
FreeSurfer pipeline (version 5.3.0) [15] was

applied to the MRI scans under centos4 x86 64
Linux system to produce cortical and subcortical vol-
umetric variables. The original MRI scan was first
mapped to the standard MNI 305 space, yielding the
image referred to as T1.mgz, which was used as the
reference image in the following registration pro-
cedure. Based on the T1 image, the corresponding
image file termed as aparc+ aseg.mgz provides the
FreeSurfer parcellated and segmented cortical and
subcortical regions. CoTh, surface area, and volume
were then calculated as morphological variables on
each of the 34 cortical regions for both hemispheres
as well as the volume on each of the 45 subcortical
regions of the whole brain.

In this study, regional CoTh in AD signature
regions, previously identified by several groups [16,
17] was evaluated. These include the entorhinal cortex
(ERC), parahippocampal gyrus (PHG), inferior tem-
poral gyrus (ITG), temporal pole (TP), medial orbital
frontal gyrus, superior temporal gyrus, rostral middle
frontal gyrus, inferior parietal lobule (including angu-
lar gyrus), superior parietal lobule, supramarginal

Table 1
Participant demographic and clinical information

CN EMCI LMCI AD F value
(n = 251) (n = 297) (n = 196) (n = 162)

Female/Male 128/123 132/165 85/111 68/94 4.36b

E4–/E4+ 184/67 169/128 92/104 54/108 70.32***c

Age 75.47 (6.54)a 71.53 (7.43) 73.83 (8.06) 74.94 (7.81) 14.85***
Education 16.43 (2.58) 15.99 (2.67) 16.31 (2.71) 15.76 (2.71) 2.71*

Type of Cognitive Test
CDRSB 0.05 (0.2) 1.31 (0.78) 1.76 (1.06) 4.84 (2.07) 633.12***
ADAS13 9.09 (4.54) 12.72 (5.51) 17.9 (7.5) 31.55 (8.81) 434.53***
MMSE 29.04 (1.23) 28.32 (1.57) 27.61 (1.85) 22.77 (2.71) 448.73***
RAVLT immediate 45.35 (10.58) 39.47 (10.8) 33.21 (10.82) 22.31 (7.03) 183.76***
RAVLT learning 5.74 (2.44) 5.29 (2.45) 3.92 (2.58) 1.91 (1.77) 102.04***
RAVLT % forgetting 36.22 (27.79) 46.98 (29.72) 67.37 (31.34) 90.1 (19.91) 142.34***

aValues are represented as mean(sd), except gender and APOE gene status, which are frequencies instead. bSignificant group differences
test (ANOVA for continuous and Chi-square test for categorical values, significance level is 0.05 by default). cp < 0.1; *p < 0.05; **p < 0.01;
***p < 0.001.
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gyrus, precuneus, posterior cingulate gyrus, and the
mean CoTh based on the aforementioned regions.

PET and MRI registration
In order to quantify the A� load from the PET

scans, FMRIB Software Library (FSL) [18] was then
used to co-register the PET image to the afore-
mentioned T1 image. Considering the relatively low
resolution of the PET image and to utilize as much
information from PET as possible, the AV45 PET
scan, with the skull, were co-registered linearly (i.e.,
trilinear interpolation) with 12 degrees of freedom
onto the T1 image. Such a registration process guar-
anteed that the AV45 PET image had the same
accurate segmentation and parcellation as in the MRI.
Thus, the mean A� load of each of the FreeSurfer
defined regions can be calculated, which was used
later to calculate the global A� load value.

Global Aβ load calculation
The registered AV45 PET with the aparc+aseg

image was first inspected to ensure appropriate cal-
culations of the mean A� uptake value (SUV) of all
the FreeSurfer-defined regions (ROIs) as expressed
in (1).

SUVROIk
=

NROIk∑

i=1
Vali

NROIi

(1)

where SUVROIk
represents the mean A� uptake value

of the region ROIk , with NROIk
representing the num-

ber of voxels labeled as region ROIk in the aparc+
aseg image, and Vali represents the intensity of voxel
i in the PET scan.

The SUV of the whole cerebellum, consisting of
four subcortical regions (left/right cerebellum white
matter and left/right cerebellum cortex), was then cal-
culated using (2), accounting for the varying sizes
of the subregions. The SUV of the global cortical
was computed in the same way, i.e., volume-weighted
mean of all 68 cortical ROIs as expressed in (2).

SUVCB

= SUVSR1 × VSR1 + SUVSR2 × VSR2 + . . . + SUVSRN
× VSRN

VSR1 + VSR2 + . . . + VSRN

(2)

where CB represents the combined region of N ROIs
(4 and 68 for the cerebellum and global cortical,
respectively, with SUVSRi representing the SUV of
ROIi , and VSRi represents the volume of ROIi .

The standard uptake value ratio (SUVR), relative
to the cerebellum, as given in Equation 3, was defined
and considered as the global A� load representation.

SUVR = SUVglobalcortical

SUVcerebellum

(3)

A widely-used threshold value of 1.10 is used here
to delineate A� positive (Amy+, SUVR > 1.10) and
A� negative (Amy–, SUVR ≤ 1.10) status [19, 20].

Statistical methods

The statistical analysis was performed using R
software (R 3.3.0) [21] and the default significant
level was determined as 0.05. To examine the inde-
pendent effect of A� load on regional CoTh, by
controlling for the effects of APOE4 status, two-way
analysis of covariance (ANCOVA), i.e., 4 (diagno-
sis: CN, EMCI, LMCI, AD) by 2 (A� load status:
Amy+, Amy–) ANCOVA, was conducted per region,
with APOE4 status (E4+, E4–) entered as categorical
covariates.

Similarly, to investigate the individual effects of
APOE4 status after controlling for global A� load,
a series of 4 (diagnosis: CN, EMCI, LMCI, AD)
by 2 (APOE4 status: E4+, E4–) ANCOVAs were
conducted, with global A� load (SUVR) as an inter-
val level covariate. As a complementary analysis, to
assess the earliest individual effects of APOE4 sta-
tus, a series of 2 (diagnosis: CN, EMCI) by 2 (APOE4
status: E4+, E4–) ANCOVAs were performed among
548 individuals diagnosed as CN or EMCI.

To examine the earliest combined effects of both
APOE4 status and A� load status on regional
CoTh and on several cognitive variables (MMSE,
RAVLT sub scores, and ADAS13 score), we
focused on above-mentioned CN and EMCI par-
ticipants (n = 548), and divided them into four
groups: E4–/Amy– (n = 241), E4–/Amy+ (n = 112),
E4+ /Amy– (n = 73), and E4+ /Amy+ (n = 122). A
series of one-way ANCOVAs were conducted, using
age as a covariate, and with CoTh or cognitive scores
as the dependent variables.

Multiple comparison correction was performed in
all aforementioned ANCOVA analyses to control the
false discovery rate (FDR). Statistically significant
results (FDR-adjusted p value < 0.05) were further
examined using post hoc Tukey HSD test.

RESULTS

E4+ status was associated with higher A� load
across all diagnostic groups, as shown in Table 2 and
Fig. 1.
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Table 2
Effect of APOE4 status on global amyloid load (SUVR) in different

diagnostic groups

E4– E4+ t testa p value

CN 1.079(0.16) 1.178(0.2) –3.65649 0.00021
EMCI 1.115(0.18) 1.246(0.21) –5.76863 0
LMCI 1.147(0.23) 1.368(0.21) –7.12632 0
AD 1.271(0.26) 1.439(0.16) –4.32684 0.00002
aH0: SUVR(E4–) = SUVR(E4+) versus H1: SUVR(E4–) < SUVR
(E4+).

Fig. 1. Differences in mean amyloid load (18F-AV45) SUVR for
each diagnostic group between E4– and E4+ participants.

Effect of Aβ load status on CoTh after
controlling for APOE4 status

Results for the left hemisphere only are reported,
since findings in both the left and right hemispheres
were similar. As can be seen in Table 3 and Fig. 2,
there was a statistically significant main effect for
A� load, accounting for the effect of APOE4 sta-
tus, on CoTh, for all brain regions examined, with
the exception of the TP, superior frontal gyrus, and
rostral middle frontal gyrus. The most significant
effects were noted in the inferior temporal gyrus
(ITG) (F = 31.18, diff (Amy+ - Amy–) = –0.099),
inferior parietal lobule (F = 20.82, diff = –0.068), pre-
cuneus (F = 16.55, diff = –0.058), the mean CoTh for
all regions (F = 15.6, diff = –0.046), ERC (F = 14.59,
diff = –0.159), and supramarginal gyrus (F = 10.98,
diff = –0.051). In all these regions Amy+ status was
associated with reduced CoTh, adjusting for the
effects of APOE4 status.

Table 3 also shows a strong main effect for diagno-
sis. Using post hoc tests (Tukey HSD), it was found
that CoTh was reduced among AD participants com-
pared to the three other diagnostic groups, and also

among LMCI participants, as compared to EMCI and
CN participants. This pattern appeared to hold for
every brain region included in these analyses, with
the exception of the superior parietal lobule, where
EMCI participants had greater CoTh than the other
diagnostic groups, which did not statistically differ
from each other. With rare exceptions, CoTh was
equivalent between CN and EMCI participants. In
the supramarginal gyrus and precuneus, CoTh was
greater in EMCI than in CN participants. Statistically
significant interaction terms (diagnosis with A� load
status) were observed for the ITG and inferior pari-
etal lobule, in which Amy+ status was associated with
reduced CoTh only in the LMCI and the AD stages.

Effect of APOE4 status on CoTh after controlling
for Aβ load

From Table 4, it can be seen that the diagnostic
group effect was similar to the pattern observed in
Table 3, i.e., AD patients had less CoTh than the
other study groups and that LMCI participants had
less CoTh than EMCI and CN participants, while
CoTh was equivalent between CN and EMCI par-
ticipants. An inspection of the regional CoTh by
APOE4 status in Fig. 3 shows that for most brain
regions analyzed, CoTh among CN and EMCI par-
ticipants is numerically greater among those who
are E4+ than E4–. However, the reverse is generally
true among LMCI and particularly AD participants,
for whom CoTh is generally lower among E4+ than
E4– participants. After adjusting for global A� load
(SUVR), there was a main effect for APOE4 sta-
tus only in the ITG [diff(E4+ - E4–) = 0.048 mm,
F = 9.99, p = 0.0016] and medial orbitofrontal gyrus
(diff = 0.027 mm, F = 4.83, p = 0.028), in which it can
be observed that CoTh was overall greater among
E4+ than among E4– participants (Fig. 3). Further-
more, the interaction term in Table 4 shows significant
difference only in the ERC, where the CoTh is greater
only among CN and EMCI participants who are
E4 + as compared to those who are E4–, whereas
among LMCI and AD participants, CoTh is greater
among E4– as compared to E4 + participants (Fig. 3).

Importantly, when CN and EMCI subjects were
analyzed independently (Table 5), E4 + status
(controlling for A� load) was associated with
increased CoTh in the ERC (diff = 0.123 mm,
F = 9.68, p = 0.002), PHG (diff = 0.082 mm, F = 6.02,
p = 0.014), ITG (diff = 0.059 mm, F = 12.56,
p = 0.0004), and TP (diff = 0.091 mm, F = 7.47,
p = 0.006).
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Table 3
Effect of amyloid status on regional CoTh, independent of APOE4 status (left hemisphere)

CN EMCI LMCI AD Fa Fa post hoc Tukey Fa

Amy– 165 Amy– 149 Amy– 66 Amy– 19 Amyloid Diagnosis (Diagnosis) Diagnosis
Amy+ 86 Amy+ 148 Amy+ 130 Amy+ 143 by Amyloid

Age 74.51 (6.8)b 69.19 (7.4) 73.68 (9.4) 77.49 (8.2) 10.64**c 15.79*** EMCI < All 4.78**
76.75 (5.7) 73.46 (6.8) 73.61 (7.3) 74.38 (7.7)

Entorhinal 3.34 (0.38) 3.32 (0.46) 3.17 (0.52) 2.77 (0.74) 14.59*** 42.18*** AD < All; 1.56
3.27 (0.37) 3.26 (0.43) 2.96 (0.52) 2.58 (0.49) LMCI < EMCI, CN

Parahippocampal 2.67 (0.34) 2.66 (0.36) 2.52 (0.39) 2.44 (0.39) 6.74** 15.6*** AD < EMCI, CN 1.23
2.58 (0.41) 2.67 (0.31) 2.5 (0.4) 2.31 (0.35) LMCI < EMCI, CN

Inferior temporal 2.66 (0.16) 2.66 (0.18) 2.61 (0.18) 2.57 (0.26) 31.18*** 13.86*** AD < All; 3.13*
2.61 (0.16) 2.61 (0.19) 2.57 (0.23) 2.39 (0.24) LMCI < EMCI, CN

Temporal pole 3.56 (0.33) 3.48 (0.37) 3.5 (0.35) 3.08 (0.63) 2.46 23.19*** AD < All; 1.99
3.53 (0.36) 3.5 (0.34) 3.35 (0.45) 3.11 (0.51) LMCI < CN

Medial orbitofrontal 2.28 (0.15) 2.27 (0.14) 2.23 (0.17) 2.25 (0.2) 8.14** 4.57** AD < CN; 1.3
2.27 (0.18) 2.23 (0.16) 2.22 (0.17) 2.19 (0.16) LMCI < CN

Superior frontal 2.48 (0.17) 2.52 (0.15) 2.45 (0.17) 2.37 (0.17) 3.79. 15.17*** AD < All; 0.14
2.46 (0.17) 2.49 (0.15) 2.42 (0.16) 2.36 (0.18) LMCI < EMCI

Rostral Middle Frontal 2.15 (0.14) 2.18 (0.13) 2.14 (0.14) 2.09 (0.16) 1.87 8.2*** AD < EMCI, CN 0.64
2.15 (0.15) 2.15 (0.12) 2.11 (0.13) 2.07 (0.15) LMCI < EMCI

Superior Parietal 1.96 (0.17) 2.01 (0.14) 1.97 (0.16) 1.95 (0.12) 6.08* 10.02*** EMCI > All 1.69
1.96 (0.17) 2.01 (0.14) 1.94 (0.16) 1.86 (0.18)

Inferior Parietal 2.19 (0.16) 2.23 (0.14) 2.2 (0.14) 2.18 (0.18) 20.82*** 10.67*** AD < All; 4.78**
2.18 (0.17) 2.21 (0.15) 2.13 (0.16) 2.02 (0.2) LMCI < EMCI

Supramarginal 2.31 (0.18) 2.37 (0.15) 2.3 (0.17) 2.26 (0.19) 10.98*** 16.51*** AD < All; 1.71
2.31 (0.18) 2.34 (0.16) 2.26 (0.17) 2.16 (0.18) EMCI > LMCI, CN

Precuneus 2.14 (0.17) 2.19 (0.14) 2.14 (0.16) 2.11 (0.14) 16.55*** 10.33*** AD < All; 1.92
2.12 (0.17) 2.15 (0.15) 2.1 (0.15) 1.99 (0.18) EMCI > LMCI, CN

Posterior Cingulate 2.38 (0.18) 2.41 (0.17) 2.4 (0.17) 2.39 (0.22) 4.25* 1.7 1.66
2.4 (0.18) 2.39 (0.17) 2.37 (0.17) 2.31 (0.18)

Mean CoTh left 2.30 (0.13) 2.33 (0.11) 2.28 (0.13) 2.23 (0.15) 15.6*** 20.62*** AD < All; 1.54
2.29 (0.14) 2.31 (0.12) 2.24 (0.13) 2.15 (0.14) LMCI < EMCI, CN

aF value is adjusted for APOE4 Status (4 × 2 ANCOVA test). bValues are represented as mean(SD), upper is for Amy– group and lower is
for Amy+ group. cp < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.

Combined effect of APOE4 status and Aβ load
status on CoTh among CN and EMCI groups

Among CN and EMCI groups, there were promi-
nent age effects on CoTh in almost every brain
region, each with a different combination of A� and
APOE4 status. However, once such age effects were
accounted for, there was no difference in CoTh mea-
sure in these two groups in any brain region.

Combined effect of APOE4 status and Aβ load
status on cognitive variables among CN and
EMCI groups

From Table 6 and Fig. 4, it can be seen that after
accounting for age, there was a significant effect on all
assessed cognitive scores: (a) the E4 + /Amy+ group
showed more impairment than the E4–/Amy– group
on the MMSE score (p < 0.001); (b) the E4 + /Amy+
group was more impaired than the E4–/Amy–
(p < 0.001), as well as the E4–/Amy+ groups
(p = 0.005) on the RAVLT (immediate) memory

test; (c) the E4 + /Amy+ group was more impaired
that the E4–/Amy– group on the RAVLT percent for-
getting (p = 0.018); and (d) the E4 + /Amy+ group
had more impaired ADAS13 scores as compared to
all other combinations of E4 + /– and Amy+/– (all
p < 0.001).

DISCUSSION

This study represents a first attempt to disen-
tangle the complex inter-relationships between A�
load, APOE4 genotype, regional CoTh, and cogni-
tion among well-defined diagnostic groups in ADNI.
Previous studies have shown that: (1) higher global
A� load and E4+ status are associated with a greater
risk of progression from CN to MCI, and MCI to
AD [22, 23]; (2) higher A� load is associated with
reduced CoTh, but with subtle impairment of cogni-
tion in the CN and MCI stage [24–33]; (3) E4+ status
is associated with an earlier age of onset of A� pos-
itivity and of AD, greater A� levels in the brain,
reduced hippocampal volumes and CoTh in limbic
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Fig. 2. Barplot of CoTh among Amy– and Amy+ participants in 4 diagnostic groups for 12 brain regions.

and neocortical regions, and subtle cognitive deficits
in CN individuals [4, 5, 34–43]; (4) further, irrespec-
tive of APOE4 status, reduced hippocampal volumes
and CoTh in various brain regions, especially those
regions characterized as AD signature regions, are
associated with impaired memory and general cog-
nition, as well as a greater risk for progression from
CN to MCI and MCI to AD [44]. However, there is
currently no consensus regarding the extent to which
A� load status and APOE4 status, independently and
in combination, are associated with neurodegenera-
tive changes in AD prone regions and with cognitive
impairment.

It is important to note that both trophic and toxic
effects of A� peptide are known and they may not
necessarily be mutually exclusive. The toxic effects
may be mediated by different mechanisms, such as
oxidative stress, inflammation, mitochondrial diffu-
sion, alterations in membrane permeability, synaptic

dysfunction, and excitotoxicity through its interac-
tion with neurotransmitter receptors. These effects
contribute significantly to the neuronal damage seen
in AD, which may be associated with A� itself,
including high concentrations in fibrillar or aggre-
gated states, interaction with free metals, interactions
with previously injured or aged brain tissue and with
decreased antioxidative mechanisms [45–48].

We devised our analytic strategy to investigate,
among 906 participants in the ADNI-1/ADNI-Go and
ADNI-2 cohorts, the unique and independent contri-
butions of those elements, which are considered as
upstream factors (i.e., A� load status and APOE4
status), on downstream factors (regional CoTh and
cognitive measures tapping memory and general
cognition). We also investigated the individual and
additive effects of E4+ and Amy+ status on CoTh
and cognitive performance, in the earliest stages
of neurodegeneration, using different combinations
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Table 4
Effect of APOE4 status on regional CoTh, independent of A� load (left hemisphere)

CN EMCI LMCI AD Fa Fa post hoc Tukey Fa

E4– 184 E4– 169 E4– 92 E4– 54 APOE4 Diagnosis (Diagnosis) Diagnosis
E4+ 67 E4+ 128 E4+ 104 E4+ 108 Status by APOE4

Age 75.77 (6.3)b 72.07 (7.3) 74.96 (8.6) 76.43 (8.6) 29.12*** 12.89*** EMCI < All 0.44
73.93 (7.0) 70.33 (7.5) 72.46 (7.4) 73.90 (7.3)

Entorhinal 3.30 (0.38) 3.22 (0.46) 3.11 (0.54) 2.69 (0.60) 0.02 68.18*** AD < All; 4.84**
3.35 (0.37) 3.37 (0.41) 2.96 (0.51) 2.55 (0.48) LMCI < EMCI, CN

Parahippocampal 2.62 (0.38) 2.64 (0.32) 2.50 (0.39) 2.37 (0.38) 1.71 25.56*** AD < All; 1.08
2.68 (0.34) 2.70 (0.34) 2.52 (0.39) 2.31 (0.34) LMCI < EMCI, CN

Inferior temporal 2.63 (0.15) 2.62 (0.19) 2.57 (0.21) 2.42 (0.27) 9.99** 32.41*** AD < All; 0.5
2.68 (0.17) 2.65 (0.19) 2.59 (0.22) 2.41 (0.24) LMCI < CN

Temporal pole 3.53 (0.35) 3.45 (0.37) 3.42 (0.40) 3.11 (0.53) 1.55 32.87*** AD < All; 1.1
3.60 (0.32) 3.53 (0.34) 3.38 (0.44) 3.10 (0.52) LMCI < CN

Medial orbitofrontal 2.27 (0.15) 2.25 (0.15) 2.22 (0.16) 2.17 (0.18) 4.83* 4.78** AD < EMCI, CN 0.53
2.28 (0.18) 2.25 (0.15) 2.22 (0.18) 2.21 (0.15)

Superior frontal 2.46 (0.18) 2.51 (0.14) 2.44 (0.17) 2.33 (0.15) 2.01 22.2*** AD < All; 1.49
2.50 (0.16) 2.50 (0.16) 2.42 (0.16) 2.37 (0.19) LMCI < EMCI

Rostral Middle Frontal 2.14 (0.15) 2.18 (0.12) 2.13 (0.14) 2.05 (0.16) 0 14.73*** AD < All; 1.8
2.15 (0.14) 2.15 (0.13) 2.11 (0.12) 2.08 (0.15) LMCI < EMCI

Superior Parietal 1.95 (0.16) 2.02 (0.14) 1.96 (0.16) 1.88 (0.18) 0.57 18.66*** AD < All; 1.7
2.00 (0.17) 2.00 (0.14) 1.94 (0.16) 1.87 (0.18) LMCI<EMCI

Inferior Parietal 2.18 (0.16) 2.22 (0.15) 2.18 (0.16) 2.06 (0.20) 0.1 25.75*** AD < All; 2.11.
2.21 (0.18) 2.22 (0.15) 2.13 (0.15) 2.03 (0.21) LMCI < EMCI

Supramarginal 2.30 (0.18) 2.35 (0.15) 2.29 (0.17) 2.17 (0.19) 2.08 30.71*** AD < All; 0.99
2.34 (0.17) 2.36 (0.16) 2.26 (0.17) 2.17 (0.18) LMCI < EMCI

Precuneus 2.12 (0.16) 2.17 (0.14) 2.12 (0.16) 2.03 (0.17) 0.36 22.49*** AD < All; 1.39
2.16 (0.17) 2.16 (0.15) 2.10 (0.16) 2.00 (0.18) LMCI < EMCI

Posterior Cingulate 2.37 (0.18) 2.41 (0.17) 2.38 (0.16) 2.33 (0.20) 0.16 5.47*** AD < All 2.03
2.42 (0.18) 2.38 (0.17) 2.38 (0.18) 2.31 (0.18)

MeanCoTh left 2.29 (0.14) 2.32 (0.11) 2.27 (0.14) 2.16 (0.15) 2.31 38.84*** AD < All; 1.25
2.32 (0.13) 2.32 (0.12) 2.25 (0.13) 2.16 (0.14) LMCI < EMCI, CN

aF value is adjusted for global A� load (4 × 2 ANCOVA test). bValues are represented as mean(SD), upper is for E4– group and lower is for
E4+ group. cp < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.

of APOE4 status and A� load status (E4–/Amy–,
E4+ /Amy–, E4–/Amy+ and E4+ /Amy+) among CN
and EMCI participants.

Our results confirmed previous reports showing
that E4+ status is associated with increased A� load
among all stages of AD (Table 2). Amy+ status,
among all participants, was found to be associated
with reduced CoTh in many AD vulnerable regions,
independent of the effects of E4+ status (Table 3)
[28, 29, 49, 50], but E4+ status was associated with
reduced CoTh in restricted brain regions, and only
among LMCI and AD participants (Table 4). Unex-
pectedly, E4+ status was associated with increased
CoTh in some of the most vulnerable brain regions to
AD pathology (i.e., the ERC, PHG, and ITG) in the
preclinical and very early stages of AD (i.e., among
CN and EMCI participants) (Table 5).

Even though we found there was no observed
cortical thinning in association with Amy+ status,
and there was cortical thickening in association with
E4+ status, among CN and EMCI participants, there
was impairment on all cognitive tests among these

participants, in association with either Amy+ and
E4+ status, independently and to the greatest extent
with combined Amy+ and E4+ status (Table 6).
Global cognitive scores (ADAS13), among CN
and EMCI participants, were significantly impaired
among E4+ /Amy+groups as compared to all other
groups, including those who were E4+ /Amy–,
suggesting that the presence of Amy+ status is inde-
pendently associated with greater impairment of
global cognitive scores. Further, memory impair-
ment, on the RAVLT immediate test, was greater
among those who were E4–/Amy+, as compared
to those who were E4+ /Amy+, suggesting that the
presence of E4+ status is independently associated
with greater immediate memory impairment. These
results demonstrate that in the earliest stages of AD, in
the absence of cortical thinning, there is impairment
in cognitive performance attributable to combined
E4+ and Amy+ status, as well as independently to
E4+ status and to Amy+ status. Given that there is
a known relationship between CoTh and cognitive
scores [44, 51, 52], the finding among CN and EMCI
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Fig. 3. Barplot of CoTh among E4– and E4+ participants in 4 diagnostic groups for 12 brain regions.

participants, who are E4+, of an association with
increased CoTh in the most vulnerable regions to
AD pathology, suggests that the mechanism under-
lying neurodegeneration associated with E4+ status
is distinct from that of Amy+ status.

Biological processes, such as metabolic activa-
tion, increased blood flow and inflammation [53, 54],
may result in increased volume of the cortical rib-
bon in brain regions, in which the neurodegenerative
process begins, with subsequent cortical thinning as
neurodegeneration becomes more advanced [55–57].
It is apparent that APOE4 is a contributing factor
to neurodegeneration, and is strongly linked to AD
pathology, alone and particularly in combination with
the A� peptide. APOE4 may increase A� deposi-
tion in plaques and impair its clearance, and also
may act independently through pathways that may
not involve A� [52]. The pathophysiological effects
of APOE4 may be mediated at a molecular level in

the process of redistribution of lipids in normal lipid
homeostasis, repairing injured neurons, maintain-
ing synapto-dendritic connections, and scavenging
toxins. These pathophysiological effects result in
adverse outcomes in various neurological conditions
and in “normal” aging. E4+ status is associated with
adverse outcomes, acceleration of progression, wors-
ening overall prognosis in response to head injury,
oxidative stress, ischemia, and inflammation, as well
as lowering of the age of onset of neurodegenerative
disease [55].

A weakness of this study is that it is cross-sectional
and so any inferences about progression from the CN
to AD stage must be considered tentative. A major
strength of the current investigation is that it uti-
lizes a well-characterized ADNI cohort, including
large numbers of subjects who are cognitively nor-
mal or in the earliest stages of disease, to power the
analyses. These large numbers of subjects that are
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Table 5
Effect of APOE4 status on regional CoTh in CN and EMCI, independent of A� load (left hemisphere)

CN EMCI Fa Fa Fa

E4– 184 E4– 169 APOE4 Status Diagnosis Diagnosis
E4+ 67 E4+ 128 by APOE4

Entorhinal 3.30 (0.38)b 3.22(0.46)
3.35 (0.37) 3.37 (0.41) 9.68**c 0.26 1.92

Parahippocampal 2.62 (0.38) 2.64 (0.32)
2.68 (0.34) 2.70 (0.34) 6.02* 0.71 0.06

Inferior temporal 2.63 (0.15) 2.62 (0.19)
2.68 (0.17) 2.65 (0.19) 12.56*** 0.45 0.37

Temporal pole 3.53 (0.35) 3.45 (0.37)
3.60 (0.32) 3.53 (0.34) 7.47** 3.88* 0.06

Medial orbitofrontal 2.27 (0.15) 2.25 (0.15)
2.28 (0.18) 2.25 (0.15) 1.71 1.72 0.04

Superior frontal 2.46 (0.18) 2.51 (0.14)
2.50 (0.16) 2.5 (0.16) 1.21 2.56 1.93

Rostral Middle Frontal 2.14 (0.15) 2.18 (0.12)
2.15 (0.14) 2.15 (0.13) 0.45 1.23 2.46

Superior Parietal 1.95 (0.16) 2.02 (0.14)
2.00 (0.17) 2.00 (0.14) 1.68 6.29* 4.65*

Inferior Parietal 2.18 (0.16) 2.22 (0.15)
2.21 (0.18) 2.22 (0.15) 2.7 3.56 1.81

Supramarginal 2.30 (0.18) 2.35 (0.15)
2.34 (0.17) 2.36 (0.16) 3.81 5.71* 1.17

Precuneus 2.12 (0.16) 2.17 (0.14)
2.16 (0.17) 2.16 (0.15) 1.6 3.89* 3.58

Posterior Cingulate 2.37 (0.18) 2.41 (0.17)
2.42 (0.18) 2.38 (0.17) 0.56 0.02 5.87*

Mean CoTh left 2.29 (0.14) 2.32 (0.11)
2.32 (0.13) 2.32 (0.12) 3.55 2.52 2.72

aF value is adjusted for global A� load (2 × 2 ANCOVA test). bValues are represented as mean(SD), upper is for
E4– group and lower is for E4+ group. cp < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.

Table 6
Combined effect of APOE4 status and A� load status on cognitive scores among CN and EMCI groups

E4–Amy– E4–Amy+ E4+ Amy– E4+ Amy+ F age F E4Amya

(241) (112) (73) (122)

MMSE 28.93 (1.35)b 28.54 (1.39) 28.73 (1.28) 28.16 (1.73) 8.48**c 7.86***
E4+ Amy+ <E4–Amy–d

RAVLT 44.00 (10.98) 41.61 (11.2) 43.73 (10.8) 38.13 (10.3) 36.85*** 8.23***
immediate E4+ Amy+ <E4– Amy–;

E4+ Amy+ <E4– Amy+
RAVLT 38.79 (29.8) 43.67 (28.5) 39.8 (26.94) 48.37 (29.74) 8.5** 2.86*
Percent forgettinge E4+ Amy+ >E4– Amy–
ADAS13e 10.00 (4.82) 11.45 (5.61) 9.70 (5.17) 13.58 (5.56) 21.9*** 13.51***

E4+ Amy+ >All

aF value is adjusted for age (One-way ANCOVA test). bValues are represented as mean(SD). cp < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.
dPost Hoc Tukey results with significant difference. eHigher scores indicate worse performance.

available in the ADNI cohort provide the statistical
power required to tease apart independent effects of
upstream biological processes, such as A� load and
APOE4 status as they relate to downstream effects on
CoTh and cognition. Future analyses should attempt
to confirm these findings using longitudinal analy-
ses of the data, and to further evaluate the effects
of regional, rather than global deposition of A�, on
CoTh and cognition.

In conclusion, our findings suggest that both A�
load and APOE4 status are highly associated with
progressive neurodegeneration, as measured by cor-
tical thinning, especially in the LMCI and AD stages,
and especially in brain regions which are vulnerable
to AD pathology. Even though there is no signifi-
cant cortical thinning noted in CN and EMCI stages,
associated with E4+ or Amy+ status, there is measur-
able cognitive impairment present. The association
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Fig. 4. Bar graph of scores on following cognitive tests: MMSE, RAVLT (immediate), RAVLT (% forgetting) and ADAS13. Individual
bars represent the following groups of participants: E4–/Amy–; E4+ /Amy–; E4–/Amy+ and E4+ /Amy+. The colored asterisk (*p < 0.05;
**p < 0.01; ***p < 0.001) on the E4–/Amy– indicates a significant difference in score from the score for the corresponding color bar, i.e.,
E4+ /Amy+ group, same as E4–/Amy+ bars in RAVLT (immediate) and ADAS13, as well as E4+ /Amy– in ADAS13. There was no significant
difference among E4–/Amy–, E4+ /Amy–, E4–/Amy+ group.

of E4+ status with cortical thickening, rather than
thinning, suggests the possibility of a very differ-
ent pathophysiological role for E4+ from that of A�
deposition in the progression of AD.
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